object Matlib extends Mathematics with Probabilities with Statistics with Trigonometry
- Since
2012-06-07
- Alphabetic
- By Inheritance
- Matlib
- Trigonometry
- Statistics
- Probabilities
- Mathematics
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##(): Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- val HALF_PI: Double
- Definition Classes
- Trigonometry
- def Schrödinger[A, B](a: A, b: B): Either[A, B]
Is the cat dead or alive?
Is the cat dead or alive?
- A
The type of the alive cat
- B
The type of the dead cat
- a
The alive cat
- b
The deat bat
- returns
A box ... is the cat dead or alive?
- Definition Classes
- Probabilities
- val TAU: Double
- Definition Classes
- Trigonometry
- def add(a: Array[Double], b: Array[Double]): Array[Double]
Element by element addition
Element by element addition
- a
THe first array
- b
The second array
- returns
An array that is the element by element summation of a to b
- Definition Classes
- Mathematics
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- def combinations(n: BigInt, c: BigInt): BigInt
Computes the possible number of distinct combinations of n items into groups of c items
Computes the possible number of distinct combinations of n items into groups of c items
- n
The number of items
- c
The number of items in a set
- returns
The number of combinations of n items in c sets.
- Definition Classes
- Probabilities
- def corr(x: Array[Double], y: Array[Double]): Double
Calculate Pearson's correlation coefficient.
Calculate Pearson's correlation coefficient. This is also known as the Correlation Coefficient or the Pearson product-moment correlation coefficient
- x
x values
- y
y values
- returns
correlation coefficient
- Definition Classes
- Mathematics
- def corrcoef(x: Array[Double], y: Array[Double]): Double
- Definition Classes
- Mathematics
- def cot(radians: Double): Double
Cotangent
Cotangent
- Definition Classes
- Trigonometry
- def csc(radians: Double): Double
Cosecant
Cosecant
- Definition Classes
- Trigonometry
- def cumsum(data: Array[Double]): Array[Double]
Cumulative sum of elements
Cumulative sum of elements
- data
values
- returns
An array containing the cumulative sum of data
- Definition Classes
- Mathematics
- def diff(x: Array[Double]): Array[Double]
- Definition Classes
- Mathematics
- def divide(a: Array[Double], b: Array[Double]): Array[Double]
Element by element division
Element by element division
- a
THe first array
- b
The second array
- returns
An array that is the element by element summation of a to b
- Definition Classes
- Mathematics
- def dot(a: Array[Double], b: Array[Double]): Double
Calculates the dot product between 2 arrays (The dot is the project of b onto a).
Calculates the dot product between 2 arrays (The dot is the project of b onto a). a and b must be the same size
- a
The first array
- b
THe second array (b will be projected onto a)
- returns
The dot product. (b projected onto a)
- Definition Classes
- Mathematics
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def extrap1(x: Array[Double], y: Array[Double], xi: Array[Double]): Array[Double]
Linear Extrapolation.
Linear Extrapolation. Recipe is from
- x
array of x values
- y
array of y values
- xi
array of x values to interpolate to
- returns
array of y values at xi
- Definition Classes
- Mathematics
- See also
https://stackoverflow.com/questions/32076041/extrapolation-in-java
- def factorial(n: BigInt, result: BigInt = 1): BigInt
Computes factorial.
Computes factorial. We need this for imaging in order because the number of permutations of n distinct objects is equal to the factorial of n
- n
The value for the factorial
- result
The accumulator of the previous iteration of factorial. Normally developers do not supply this value. Instead the default value of 1 is used.
- returns
factorial of n
- Definition Classes
- Probabilities
- def fft(data: Array[Double]): Array[Complex[Double]]
Discrete Fourier transform
- def fibonacci(x: Int): BigInt
- x
The integer of interest
- returns
The fibonacci value for the given integer
- Definition Classes
- Mathematics
- def fibonacciStream(x: Int): Stream[BigInt]
Create a stream of fibonacci numbers up to the given integer
Create a stream of fibonacci numbers up to the given integer
- x
The integer of interest
- returns
A Stream of numbers in a fibonacci sequence up to the fibonacci number for x
- Definition Classes
- Mathematics
- def find[A](data: Array[A], predicate: (A) => Boolean): Seq[Int]
- def fix(x: Double): Double
Round towards zero
- def fzero(fn: (Double) => Double, min: Double, max: Double): Double
Single variable nonlinear zero finding over an interval
Single variable nonlinear zero finding over an interval
- fn
The function whose zero we're searching for
- min
The interval minimum
- max
The interval maximum
- returns
The x value of zero for the fn
- Definition Classes
- Mathematics
- def fzero(fn: (Double) => Double, start: Double): Double
Single variable nonlinear zero finding
Single variable nonlinear zero finding
- fn
The function whose zero we're searching for
- start
A starting quess for the location of the zero
- returns
The x value of zero for the fn
- Definition Classes
- Mathematics
- def gcd(a: Int, b: Int): Int
Greatest common denominator
Greatest common denominator
- Definition Classes
- Mathematics
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def hist(data: Array[Double], centers: Array[Double], inclusive: Boolean = false): Array[Double]
Bins elements into bins with specified centers
Bins elements into bins with specified centers
- data
The data to bin
- centers
The bins where each value represents a center of a bin. They MUST be ordered or the data will not be valid.
- inclusive
if true values outside of the centers are excluded from results. The default is
false
- returns
The histogram of data
- Definition Classes
- Probabilities
- def histc(data: Array[Double], edges: Array[Double]): Array[Double]
Bins elements using specified edges
Bins elements using specified edges
- data
The data to bin
- edges
array defining the edges of each bin
- returns
The histogram of data
- Definition Classes
- Probabilities
- def interp1(x: Array[Double], y: Array[Double], xi: Array[Double]): Array[Double]
Linear interpolation
Linear interpolation
- x
array of x values
- y
array of y values
- xi
array of x values to interpolate to
- returns
array of y values at xi
- Definition Classes
- Mathematics
- Exceptions thrown
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def isprime[A](n: A)(implicit arg0: Numeric[A]): Boolean
- returns
true if the number is a prime number. False otherwise
- Definition Classes
- Mathematics
- def linspace(d1: Double, d2: Double, n: Int): Array[Double]
generates n linearly-spaced points between d1 and d2.
generates n linearly-spaced points between d1 and d2.
- d1
The min value
- d2
The max value
- n
The number of points to generated
- returns
an array of lineraly space points.
- Definition Classes
- Mathematics
- def logspace(d1: Double, d2: Double, n: Int): Array[Double]
generates n logarithmically-spaced points between d1 and d2.
generates n logarithmically-spaced points between d1 and d2.
- d1
The min value
- d2
The max value
- n
The number of points to generated
- returns
an array of lineraly space points.
- Definition Classes
- Mathematics
- def mad(data: Array[Double]): Array[Double]
Mean absolute deviation
- def mean(data: Array[Double]): Double
- data
data
- returns
mean value of
data
- Definition Classes
- Statistics
- def median(data: Array[Double]): Double
- data
data
- returns
median value of
data
- Definition Classes
- Statistics
- def mod(a: Double, b: Double): Double
Modulus after divistion.
Modulus after divistion. THis just calls the
%
operator; it's included to make porting Matlab code more familiar.- a
a value
- b
the other value
- returns
the modulus
- Definition Classes
- Mathematics
- def multiply(a: Array[Double], b: Array[Double]): Array[Double]
Element by element multiplication
Element by element multiplication
- a
THe first array
- b
The second array
- returns
An array that is the element by element summation of a to b
- Definition Classes
- Mathematics
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def near(data: Array[Double], key: Double, inclusive: Boolean = true): Int
Find the index of the array nearest to the value.
Find the index of the array nearest to the value. The values array can contain only unique values. If it doesn't the first occurence of a value in the values array is the one used, subsequent duplicate are ignored. If the value falls outside the bounds of the array, null is returned
- data
Values to search through for the nearest point
- key
THe value to search for the nearest neighbor in the array
- inclusive
If true the key must be within the values array
- returns
The index of the array value nearest the value. -1 will be returned if the key is outside the array values
- Definition Classes
- Mathematics
- def norm(x: Array[Double]): Double
Compute the norm.
Compute the norm. Treats the array as a vector of values.
- x
The array
- returns
The norm (aka magnitude) of the array.
- Definition Classes
- Mathematics
- def normalizeAngle(radians: Double): Double
Adjusts an angle in radians to fall between 0 and 2 * PI
Adjusts an angle in radians to fall between 0 and 2 * PI
- returns
The same angle but adjusted so that if falls between 0 and 2 PI
- Definition Classes
- Trigonometry
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def prod(data: Array[Double]): Double
- data
The data array
- returns
The product of the elements of data
- Definition Classes
- Mathematics
- def quantile(data: Array[Double], p: Array[Double], method: Int): Array[Double]
Empirical quantile (percentile).
Empirical quantile (percentile). Like prctile in Matlab's statistics toolbox
- data
The data samples
- p
The percentiles of interest (0 <= p <= 1)
- method
The method for calculating the emperical quantile:
- Interpolation so that F(X_(k)) == (k-0.5)/n. (DEFAULT) 2. Interpolation so that F(X_(k)) == k/(n+1). 3. Based on the empirical distribution.
- Definition Classes
- Probabilities
- def quantile(data: Array[Double], p: Array[Double]): Array[Double]
- Definition Classes
- Probabilities
- def quantile(data: Array[Double], p: Double, method: Int): Double
- Definition Classes
- Probabilities
- def quantile(data: Array[Double], p: Double): Double
- Definition Classes
- Probabilities
- def relativecdf(y: Array[Double], y0: Array[Double], r: Array[Double]): Array[Double]
Calculate the relative cumulative density between 2 sample sets.
Calculate the relative cumulative density between 2 sample sets. Internally the CDF is calculated using the empirical CDF,
tocdf
- y
Samples from the comparison outcome space
- y0
Samples from a reference outcome space
- r
The relative density at r
- returns
The relative cumaltive density
- See also
‘‘Relative Distribution Methods in the Social Sciences’’ by Mark S. Handcock and Martina Morris, Springer-Verlag, 1999,Springer-Verlag, ISBN 0387987789
- def relativepdf(y: Array[Double], y0: Array[Double], r: Array[Double]): Array[Double]
Calculate relative probability density between 2 sample sets.
Calculate relative probability density between 2 sample sets. Internally the PDF is calculated using scilube.probability.KDE.
- y
Samples from the comparison outcome space
- y0
Samples from a reference outcome space
- r
The proportion (e.g. probability of y / y0 values relative to q0(r) where 0 <- r(n) <= 1
- returns
The relative density at r
- See also
‘‘Relative Distribution Methods in the Social Sciences’’ by Mark S. Handcock and Martina Morris, Springer-Verlag, 1999,Springer-Verlag, ISBN 0387987789
- def rem(x: Double, y: Double): Double
- x
a value
- y
another value
- returns
Remainder after division
- Definition Classes
- Mathematics
- def sec(radians: Double): Double
Secant
Secant
- Definition Classes
- Trigonometry
- def sign(x: Double): Int
Signum function
- def sort[A](x: Array[A])(implicit arg0: Ordering[A]): Seq[Int]
This does not actually sort, rather it returns the sort indices of an array.
This does not actually sort, rather it returns the sort indices of an array. This provides sort indices like Matlab's
sort
method. You can use the returned value to sort the array like so:import scala.math.Ordering._ // import implicit orderings val a = Array(1, 3, 2) val i = Matlab.sort(a) val b = Matlib.subset(a, i);
- def sort[A](x: Array[A], lt: (A, A) => Boolean): Seq[Int]
This does not actually sort, rather it returns the sort indices of an array.
This does not actually sort, rather it returns the sort indices of an array. This provides sort indices like Matlab's
sort
method. You can use the returned value to sort the array like so:val a = Array(1, 3, 2) val i = Matlab.sort(a, (i: Int, j: Int) => i < j) val b = Matlib.subset(a, i);
- A
The type of the values to be sorted
- x
The array to sort
- returns
The indices of the correct sort order
- def std(data: Array[Double]): Double
Standard deviation is a statistical measure of spread or variability.The standard deviation is the root mean square (RMS) deviation of the values from their arithmetic mean.
Standard deviation is a statistical measure of spread or variability.The standard deviation is the root mean square (RMS) deviation of the values from their arithmetic mean.
std normalizes values by N, where N is the sample size. This the Population Standard Deviation
- data
data
- returns
standard deviation of data
- Definition Classes
- Statistics
- def subset[A](data: Array[A], idx: Seq[Int])(implicit arg0: ClassTag[A]): Array[A]
Extract a subset of an Array.
Extract a subset of an Array. Example:
// MATLAB equivalent: // a = 1:10 // idx = [2 3 5 6] // b = a(idx) val a = (0 to 10).toArray val idx = Seq(2, 3, 5, 6) val b = Matlib.subset(a, idx)
NOTE: This does no bounds checking!! Makes sure your indices are between 0 and data.size
- A
The Type of the data array
- data
The array to subset
- idx
Indices into data to exist in the subset
- returns
An a subset of data (e.g. In Matlab
- def subtract(a: Array[Double], b: Array[Double]): Array[Double]
Element by element subtraction
Element by element subtraction
- a
THe first array
- b
The second array
- returns
An array that is the element by element summation of a to b
- Definition Classes
- Mathematics
- def sum(x: Array[Double]): Double
- Definition Classes
- Mathematics
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- def tocdf(data: Array[Double]): (Array[Double], Array[Double])
Emperical cumulative density function.
Emperical cumulative density function. This makes no assumptions about the data
- data
Data set to generate a CDF for
- returns
A tuple of (cdf, x) where cdf is the cumulative density defined over x
- def trapz(x: Array[Double], y: Array[Double]): Double
Trapezoidal integration
- def unique(a: Array[Double], occurrence: String = "last"): (Array[Double], Array[Int], Array[Int])
Same as Matlab's unique.
Same as Matlab's unique. For performance, if you just need the unique values use
a.distinct
. This method also returns the order indices.
a.distinct }}} This method also returns the order indices.
- a
An array
- occurrence
The default value is occurrence = "last", which returns the index of the last occurrence of each repeated value (or row) in A, while occurrence = 'first' returns the index of the first occurrence of each repeated value (or row) in A
- returns
A tuple of (c, ia, ic). c is the same values as in A but with no repetitions. C will be sorted. ia and ic are index arrays such that c = a(ia) and a = c(ic)
- Definition Classes
- Mathematics
- def variance(data: Array[Double]): Double
Population Variance (like Matlab's var function but var is a keyword in Scala so I couldn't use it)
Population Variance (like Matlab's var function but var is a keyword in Scala so I couldn't use it)
- data
data
- returns
variance of data
- Definition Classes
- Statistics
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated @deprecated
- Deprecated
(Since version ) see corresponding Javadoc for more information.